

An Application of LOTEM around A Salt Dome near Houston, Texas

Andri Yadi Paembonan¹, Rungroj Arjwech¹, Sonya Davydycheva³, Maxim Smirnov^{2,3}, Kurt M. Strack³

¹Master Program of Getechnology, Khon Kaen University ²Department of Civil, Environmental and Natural Resources Engineering Geothermal Engineering, Luleå University of Technology ³KMS Technologies

Outlines

- Background
- Methodologies
- Data processing
- Result & discussion
- Conclusion
- Acknowledgments

- Seismic :
 - Hampered by salt bodies
 - High velocity of salt

- Gravity survey (mapping)
- Electromagnetic:
 - Issue: high cultural noise

- Processing of LOTEM data for confidence to the quality of inversion and interpretation
- Preliminary interpretation for overhang

(29.9547° 95.8272°)

(29.9529° 95.8271°)

(29.9510° 95.8271°)

RxOc = Located between North and South transmitter RxOa = Near Offset RxOb= Middle offset

Survey setting

Tx North: -340 m

(29.9659° 95.8274°)

(29.9628° 95.8273°)

Tx South: 0

900 m

1100 m

1300 m

Array

- Grounded wire transmitter,
- Receiver :
 - Induction loop and coil for magnetic field
 - Polarized electrode for electric field.

CSEM: LOTEM & FSEM

LOTEM

- Used with high electromagnetic noise
- Measured electric and magnetic field

Focused Source EM

- Significantly higher spatial resolution
- Provides deeper resistivity data;
- Using the vertical focusing in the electric field;
- Inspired by the resistivity well logging (Laterologs 7).

The survey current is focused,

- Providing better vertical resolution
- Deeper depth of investigation

CSEM & FSEM

Rykhlinskaya, E., & Davydycheva, S., 2014, U.S. Patent 8,762,062 B2. Davydycheva, S., 2016, U.S. Patent Application US 2016/0084980 A1.

W (ch2+)

50 m cables

FSEM circular dipole field layout

- Center needs to be split into two: C1 & C2
 - Distance between them ~0.3 to 1 m
- Centers C1 & C2 always connect to "minus" of KMS-820 channels
- Peripheral electrodes always connect to "plus" of KMS-820 channels

50-m electrode extension cable

Compatible to grounding electrodes

ch1+(E) ch1-(C1) ch2+(W) ch2-(C1) ch3+(N) ch3-(C2)

Data quality assurance

- To avoid problems in data processing.
- Calibration & header checking
- Amplitude calibration
 - Timing check
 - Header editing

14

TX & RX alignment

- Sample frequency = 1kHz
- Duty circle = 100%
- Transmitter current = 70 A
- Switch time = 8 s
- Receiver = Ex, Ey, Hz loop, and Hz coil

Pre-stack : Filtering harmonic noise

- Butterworth low-pass filter
- Power line harmonic 60 Hz
- Center harmonics (60, 80, 120, 180, 300, etc)

Sample frequency = 1kHz Duty circle = 100% Transmitter current = 70 A Switch time = 8 s Receiver = Ex, Hz loop

Stacking : Compensate for the unrecognized sporadic noise

Ringing effect

19

DC-step removal: Hz

Rx0c

Time Rx0c Rx0a Rx0b U 0 2.01E+01 1.63E+00 9.08E+00 0

Time	RxOc	Rx0a	Rx0b	e D	-		Rx0a	and the second
0	2.01E+01	1.63E+00	9.08E+00	tag	1 /		Rx0b	Reality Andrew Strategies and the frank strate
1	2.65E+01	7.77E+00	4.29E+00	0 100	•			North
2	2.53E+02	$1.47 E{\scriptscriptstyle +}02$	2.04E+01	>				TX electrode
3	4.73E+02	3.01E+02	3.65E+01	ec.		V(t)		
4	6.95E+02	4.48E+02	5.39E+01		0-			Tx electrode
5	$9.15E{\scriptscriptstyle +}02$	$5.98E{+}02$	7.28E+01	e a a	1// /			
6	$1.13E{+}03$	$7.46E{\scriptscriptstyle +}02$	9.50E + 01	N N				6
7	1.33E+03	8.92E+02	$1.17E{+}02$	1				
8	$1.54E{+}03$	$1.02E{\rm +}03$	1.40E+02					Broh
9	$1.74E{\scriptscriptstyle +}03$	$1.16E{\scriptscriptstyle +}03$	1.64E+02					The second se
10	1.94E+03	$1.30E{+}03$	1.93E+02		-			
etc	Etc.	Etc.	etc		1	10 100	1000 10	
					3			
Time	Rx0c	RxOa	a RxOb	e c				THE REAL
0	4.51E+01	3.21E+01	1.40E+01	00 D	-		5.4	
1	1.18E+01	9.00E+00	9.35E+00				$=$ $\frac{\text{Rx1}}{\text{Px2}}$	
2	1.90E+01	1.50E+01	1 3.23E+01	>			Rx3	Rx1 💿
3	5.13E+01	3.87E+01	5.25E+01		- /			
4	8.30E+01	6.20E+01	L 7.44E+01			V(t)		Bx2 O
5	1.14E+02	8.27E+01	9.59E+01	ISE				and the second second second
6	1.42E+02	1.05E+02	2 1.17E+02	le				
/	1.71E+02	1.2/E+02	1.34E+02	2 10				Rx3 O
8	2.01E+02 2.20F+02	1.40E+02	1.34C+02 1.74C+02					A PERSON AND A
10	2.231+02 2 53F+02	1 86F+02	1.7 + 1.02 1.92F+02		_			
etc	Etc.	Etc	. etc	1.	1 10) 100 100 	0 10000	

Time (ms)

Apparent resistivity (Early and late time)

Focused source solution to volume imaging

Duty circle= 50%

FSEM: Preliminary result

Conclusion:

- Processing pre- & post-stack give confidence to the data quality;
- FSEM method: sensitivity to the area under the salt dome.

Future works:

- LOTEM data inversion
- Joint inversion

- KMS Technologies' staff:
 - Data measurement
 - T. Hanstein's support
- Khon Kaen University.

ທາງທຍາລັຍສອນແກ່ນ

Thank you for your attention

results

Measurements vs 3D model: transients in receivers

- Offection context of the context
 - DC levels: checked to 1 nV
 - Time-decay curves
- Ex (inline) & Ey (cross-line):
 - In all receivers: similar timedecay
 - Ey is comparable to Ex because at the edge of the salt dome currents tend to turn around its corner(s)
- Circular dipole data:
 - Show focused vertical current
 - All receivers behave different:
 - Rx3 is NOT above salt: vertical current is positive
 - Rx2 & Rx1 are above salt: vertical current is negligible ~ (model) or even slightly negative (data)
 - Difficult to match "zero current down" above shallow resistor
 - Difficult to match the data wiggles at early times (shallow effects)

STANDARD CSEM

KMS

Technologies