

CSEM revisited: shales and reservoir monitoring edited for handout EAGE 2017, PARIS May 2017

S. Davydycheva¹, I. Geldmacher¹, T. Hanstein¹, K. Strack¹ KMS Technologies

www.KMSTechnologies.com

7 KMS Technologies

> 17 years of excellence in electromagnetic R&D

1

Background >>> HW architecture >>> Examples >>> Conclusion Motivation – our biggest market

- EOR market 2015: 20.4 Billion US \$
 - Geophysical data: temperature & pressure
- EOR market predictions 2020:
 - <u>https://globenewswire.com/</u> 283 billion US \$
 - Conservative 8% growth = 30 billion US \$
 - 'more than triple' = 70.6 Billion US \$ http://www.environmentalleader.com/

Grand View Research Market Research & Consulting

Geophysical data → ONLY feed forward methods

- \rightarrow GREAT opportunity
- \rightarrow ALL cause resistivity contrast

Global enhanced oil recovery (EOR) market volume by technology, 2012-2020 (Million Barrels)

Background >>> HW architecture >>> Examples >>> Conclusion Status of CSEM for reservoir monitoring

- Early work of CSEM for hydrocarbon reservoir monitoring
 - 1980s and 90s Australia (Vozoff et al.), Germany (Strack et al. 1989, Hoerdt et al., 1984, later several Ziolkowski et al. papers) → frustrating issues with CSEM, no agreement between project partners
- Issues with CSEM
 - 1. ANISOTROPY ANISOTROPY ANISOTROPY..
 - 2. Borehole calibration to logs Solved around 1999 3D induction log
 - 3. Where does the information come from OFFSET (focusing & measurements Ez here)
 - 4. Borehole-to-surface calibration surface-to-borehole tools (active field here)

Our activities:

- 2004 first surface-borehole integrated monitoring patent: <u>US 06739165</u>
- 3D Feasibilities: 2000 to present (most continents)
- Borehole EM prototype 2009
- Array tensor EM acquisition commercial since 2010, used in >20 countries
- Integrated 3D modeling since 2006
- First successful field trial 2016 in Asia
- Shallow 3C EM/microseismic borehole tool 2016 →
- INTEGRATED multi-components/physics borehole/surface monitoring
- Extendable to fracture & depletion monitoring

Background >>> HW architecture >>> Examples >>> Conclusion Issue 1: Anisotropy is EVERYWHERE – Problem solved

Background >>> HW architecture >>> Examples >>> Conclusion Issue 3: Anisotropy calibration with 3D Induction logging principle

40 % more reserves \rightarrow error estimate

After Kriegshaeuser et al, 2000

After Yu et al., 2001

40% more oil \rightarrow without big errors

Background >>> HW architecture >>> Examples >>> Conclusion Issue 3: Where is the information focus?

Rykhlinskaya, E., & Davydycheva, S., 2014, U.S. Patent 8,762,062 B2. Davydycheva, S., 2016, U.S. Patent Application US 2016/0084980 A1.

© 1999 - 2017 KMS Technologies

6

Background >>> HW architecture >>> Examples >>> Conclusion Issue 4: Surface-to-borehole calibration

- Logs (best 3D) are the ground truth (after log inversion)
- MUST scale to surface from borehole & vice versa
- ➢ Boreholes include casings → need through casing measurements (E & H & multi-scale)
- MUST scale to TENSOR surface measurements

All anisotropic

➤ → all multi-component in E and H and as FULL tensor

Background >>> HW architecture >>> Examples >>> Conclusion Architecture & hardware setup

Background >>> HW architecture >>> Examples >>> Conclusion Receiver (KMS-820 array system): for MT & CSEM

© 1999 - 2017 KMS Technologies

> 17 years of excellence in electromagnetic R&D

Background >>> HW architecture >>> Examples >>> Conclusion Reservoir monitoring setup in an Asian field \triangleright 3D anisotropic resistivity model; derived from well log Monitoring setup: full EM field Ex, Ey, Ez, Bx, By, Bz > - Shallow borehole tool \rightarrow vertical component Ez **Receivers Transmitter** Overburden: R_h : 2.5 Ω m to 10 Ω m R_v / R_h : 1.1 to 1.2 $R_{\rm h} = 4, R_{\rm v} = 4.5 \Omega m$ $R_{\rm h} = 9, R_{\rm v} = 12 \Omega m$ R_h : 3 Ω m to 6.5 Ω m 1 km $R_v / R_h = 1.1$

> 17 years of excellence in electromagnetic R&D

11

Background >>> HW architecture >>> Examples >>> Conclusion Shallow borehole tool: measure and model Ez component

- Ez: sensitive to deep thin resistors
- Shallow (20-30 m)
 verstical boreholes
- Example:
 - Rt anisotropy matters!

© 1999 - 2017 KMS Technologies

Background >>> HW architecture >>> Examples >>> Conclusion **FSEM:** Focused source solution to volume imaging

Anomaly in the order of 40% for the smallest reservoir >

Reservoir layers individually respond! >

- Smaller reservoir can be detected
- **Higher spatial resolution** \succ
- Shallow structure removable

Background >>> HW architecture >>> Examples >>> Conclusion FSEM performance on the Asian field example (above)

- Anomaly approx.10%
- Physics similar to Ez
 (shallow borehole tool)
- More field trials needed

Background >>> HW architecture >>> Examples >>> Conclusion Reservoir Monitoring: Example layout & water flood time lapse result

Background >>> HW architecture >>> Examples >>> Conclusion Hydro-fracturing monitoring application: back to the Bakken

Background >>> HW architecture >>> Examples >>> Conclusion Bakken: surface-to-surface EM monitoring setup

http://www.statoil.com/en/NewsAndMedia/News/2011/Pages/XXX16Oct2011.aspx

Background >>> HW architecture >>> Examples >>> Conclusion Derivation of anisotropic background model

© 1999 - 2017 KMS Technologies

> 17 years of excellence in electromagnetic R&D

Background >>> HW architecture >>> Examples >>> Conclusion Derivation of 1D anisotropic background model

LAYER	RHO-H	RHO-V	THICK,ft	THICK,m	DEPTH,f	DEPTH,m	Formation	
1	26.23	33.74	9861	3007.605	9861	3007.605	-	
2	109.2	227.06	7.5	2.2875	9868.5	3009.893	Upper Bakken	
3	12.1	17.2	16.5	5.0325	9885	3014.925		
4	36.55	43.14	7.5	2.2875	9:925	3(17.213	D	
5	17.22	18.05	39	11.895	9931.5	3029.108		
6	98.56	118.64	31.5	9.6075	9963	3038.715	Lower Bakken	
7	3.96	4.78	34	10.37	9997	3049.085	-	-
8	12.1	12.25	2	0.61	9999	3049.695	3 Forks	
9	2.53	2.69						

© 1999 - 2017 KMS Technologies

> 17 years of excellence in electromagnetic R&D

Side view:

19

Background >>> HW architecture >>> Examples >>> Conclusion Surface-to-surface EM response before & after hydro-fracturing

- Grounded Tx: current = 150 A, 500 m long
- Offsets = 1000 5000 m
- 3D model: rectangular fracture area
- Resistivity:
 - 8 Ωm if sand- & salt-water-based proppant
 - 0.2 Ωm if conductive particles based proppant as reported by Palish et al. (SPE 2016, 2017, CARBO Ceramics)

Plan view: Flooded area 3 km long (in x), 400 m in y Tx: 1 km to the left (at x=-1 km) Rx all over flooding area, offsets from 1 to 9 km in x, 0:200 m in y

Background >>> HW architecture >>> Examples >>> Conclusion Surface-to-surface 3D-EM response before & after hydro-fracturing

- Conductive-particles-based proppant:
 response up to 20-40% above fractured area egdes
- Grounded Tx: current = 150 A, 500 m long

Background >>> HW architecture >>> Examples >>> Conclusion Surface-to-surface 3D-EM: magnetic field before & after hydro-fracturing

Background >>> HW architecture >>> Examples >>> Conclusion Bakken field: surface-to-borehole EM monitoring setup

> Surface Casino

> > Distance from flooded area to Rx in observation well varies from 200 m to 0

Flooded area

© 1999 - 2017 KMS Technologies

http://www.statoil.com/en/NewsAndMedia/News/2011/Pages/XXX16Oct2011.aspx

*Not to scale

> 17 years of excellence in electromagnetic R&D

Water Table

Upper Bakken (Shale)

Middle Bakken (Tight carbonate)

Lower Bakken (Shale)

Three Forks (Tight dolomite)

> 17 years of excellence in electromagnetic R&D

Background >>> HW architecture >>> Examples >>> Conclusion Shallow borehole tool: measure and model Ez component

- Ez: sensitive to deep thin resistors
- Shallow (20-30 m)
 verstical boreholes
- Example:
 - Rt anisotropy matters!

Shallow borehole too

Background >>> HW architecture >>> Examples >>> Conclusion Surface-to-Borehole 3D-EM: Inline Ex – dBy/dt partially flooded

HORIZONTAL WELL \rightarrow only Bx,By

Effect ~10% at 31.6 ms

Rx positions: x varies from 1000 to 4000 m, y = 0, z = 3033.9 m = 9953.7 ft (in Lower Bakken) **The flooded area:** from 0 to 5000 m in x, from -500 to variable distance in y (-200:0), from top Upper Bakken to bottom Lower Bakken (31 m thick) in z.

> 17 years of excellence in electromagnetic R&D

Background >>> HW architecture >>> Examples >>> Conclusion Surface-to-Borehole 3D-EM: Inline Ex – dBx/dt, dBz/dt partially flooded

Effect up to 20% at 31.6 ms

© 1999 - 2017 KMS Technologies

HORIZONTAL WELL → only Bx,Bz

0 m to water front

10[°]

10[°]

10 m

20 m

40 m

100 m

200 m

-- unflooded

Background >>> Architecture & HW >>> Examples >>> Conclusion Reservoir Monitoring: Real data example: microseismic/EM

Conclusion

- > A long path from patent → Feasibility → Hardware → Field trial
- Reservoir monitoring EM & microseismic system available
 - Surface-to-surface full field EM system fully commercialized
 - Surface-to-borehole full field EM system in field trial
- Two applications studied
 - Water-flood monitoring for EOR with field trial
 - Hydro-fracturing monitoring field trial needed
- > NEXT:
 - More field pilots
 - Develop deep multi-scale THROUGH CASING borehole tool

Background >>> Methods >>> Monitoring examples Acknowledgements

Thanks to supporters of various parts: Aramco, DeepLook consortium (BP, Chevron, ConocoPhillips, Shell), ENI, Ormat, PTTEP, Shell, WellDynamics ...and all KMS staff.

All technology protected by US & Foreign patents (see KMS Technologies website)

0:44